Wreath products of acts over monoids: II. torsion free and divisible acts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-torsion free Acts Over Monoids

In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

-torsion free acts over monoids

in this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

On the U-WPF Acts over Monoids

Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...

متن کامل

Stability, flatness and torsion in acts over monoids

Our aim in this paper is to study the concept of stability for acts over monoids and in the process develop a more coherent framework for some of the current techniques and construction used in the homological classification of monoids. We also present some new results relating to torsion free acts over monoids and to the embeddability of semigroup amalgams.

متن کامل

on the u-wpf acts over monoids

valdis laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. in this paper we introduce a new property of acts over monoids, called u-wpf which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. we also show that regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1989

ISSN: 0022-4049

DOI: 10.1016/0022-4049(89)90050-9